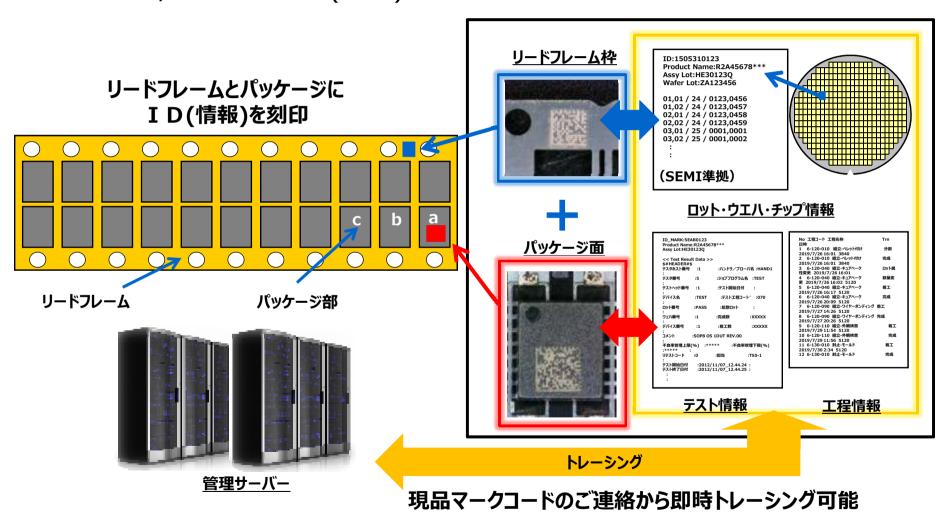
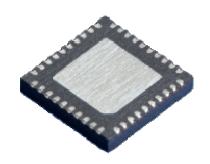

尾花沢事業所 電子デバイス製造部の技術紹介



半導体事業のご紹介

(1)1by1 ロットトレーシング技術

1 チップ単位で対応可能なトレーシング技術と品質管理フレーム/パッケージ I D (情報)によるトレーサビリティ



(2)QFNウェッタブルフランク技術

開発中パッケージ

ノンリードパッケージに適用、高品質な接合性を提供

- ◆実装部視認性向上
- ◆実装強度向上(安定したフィレットの形成)
- ◆実装性向上(下面切断バリの低減、実装平坦性の向上)

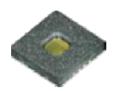
ご提案

		ウエッタブル構造		
	一般的なQ F N	他仕様例 (切込み方式)	弊社ご提案	
端子側面部				
実装端子部フィレット	レジン 端子 実装基板 フィレット	レジン 端子 実装基板	フィレット	
実装部視認性	△(フィレット形状)	0	0	
実装強度	Δ	0	0	
実装性	△(切断バリ)	△ (切断バリ)	0	

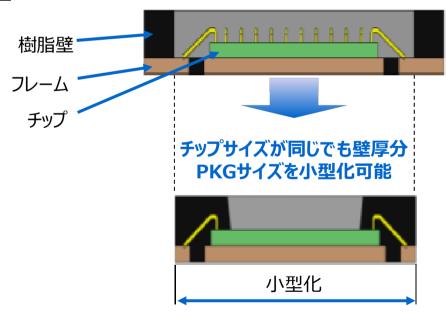
(2)QFNウェッタブルフランク技術

信頼性試験の結果 AECQ-100 RevH Grade0

No.	評価	内容	時間	評価結果
1	高温保存	150℃	3000h	OK
2	温度サイクル	-65℃~150℃	3000cyc	OK
3	高温高湿保存	85℃,85%	1500h	OK
4	PCT	121℃,100%	128h	OK


信頼性確認結果、

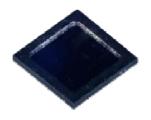
SATでの剥離確認 及び OPEN/SHORT確認で問題なし


(3)センサ用チップ露出・開口モールド技術

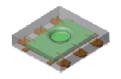
開発中パッケージ

◆特長 基板やフレームにチップ、ワイヤボンディング組立後、 センサエリア以外の領域に樹脂壁成型が可能

- ◆効果
 - ①外形寸法小型化(□7mmの場合、面積比約50%削減)
 - ②基板・ガラスの低コスト化
 - ③組立後のワイヤ高信頼性
 - ④樹脂壁厚化による高耐湿性


(3)センサ用チップ露出・開口モールド技術

ご提案


■パッケージ例

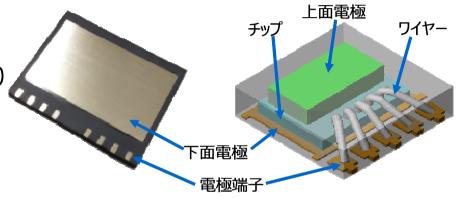
■ パッケージ例 m			
PKGタイプ	外形寸法	開口寸法	
SON6	3.5 x 3.5 x 0.635	□1.0	
SON24	5.0 × 5.0 × 0.635	□3.0	
QFN48	7.0 × 7.0 × 0.635	□5.0	
SON8	3.5 x 3.5 x 0.715	□1.0	
SON8	3.5 × 3.5 × 0.715	00.8	

開発中パッケージ

※四角形の開口部

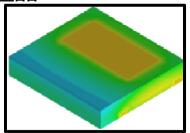
※丸形の開口部

信頼性試験の結果


No.	評価	内容	時間	評価結果
1	高温保存	150℃	500h	OK
2	温度サイクル	-65℃~150℃	500cyc	OK
3	高温高湿保存	85℃,85%	1000h	OK
4	PCT	121℃,100%	100h	OK

(4)両面電極·Exposed Die Pad実装技術

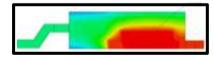
開発中パッケージ


高電圧·高放熱 両面電極

- ◆効果
 - ①大電流に対応可能 一般品と比較して16%電流が多く流せます。 (放熱シミュレーションより算出)
 - ②高放熱パッケージが製作可能
 - ③リード付きタイプも製作可能
 - ④既存品で40 V、50 Aの実績あり

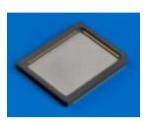
放熱シミュレーション比較

◆両面電極品

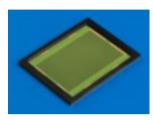


◆中央部断面 最大値:139.8℃

◆比較品


◆中央部断面 最大值:158.1℃

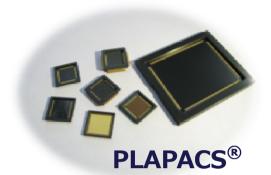

樹脂成型事業のご紹介



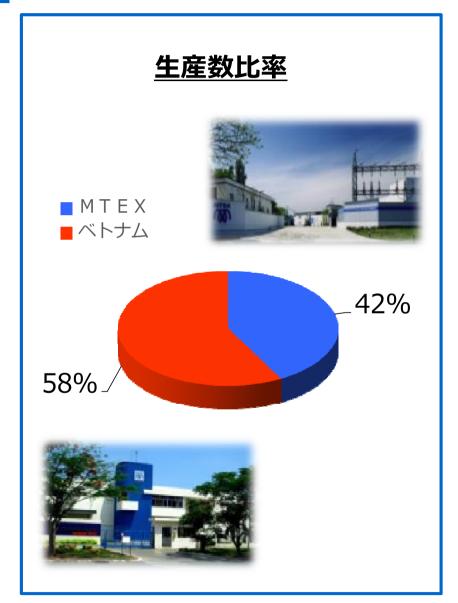
OFN(放熱板付き)

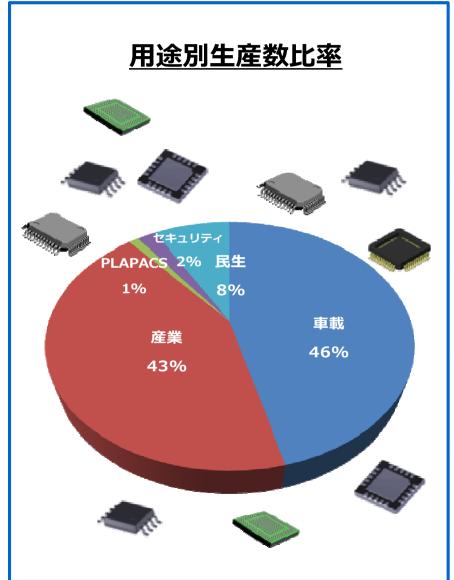
基板PKG(小型)

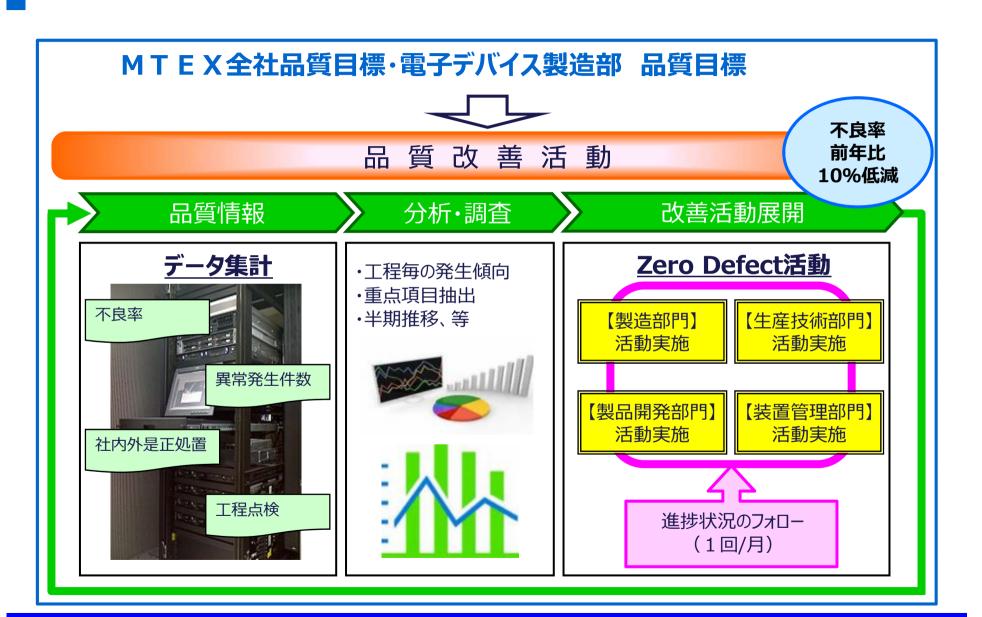
基板PKG(大型)


QFP

基板PKG(小型)


独自技術のご紹介 PLAPACS®の特長と他社比較


- ◆樹脂配合技術と自社モールド金型加工技術により、 高耐湿性、高寸法精度を兼ね備えたプラスチック 中空パッケージを提案
- ◆他社プラスチックパッケージ、セラミックスパッケージと比較し優れた特性を有す


No.	項目	PLAPACS®	他社 プラスチック パッケージ	セラミックス パッケージ
1	耐湿特性	\circ	\triangle	0
2	寸法精度	0	0	\triangle
3	軽量化	0	0	\triangle
4	設計の自由度	0	0	\triangle
5	放熱性	0	\triangle	0
6	製品開発時の追加費用抑制	0	0	\triangle
7	製品開発時の切替時間短縮	0	0	0

生産状況

品質改善活動の取り組み

